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bstract
A new approximating formula for the Arrhenius integral has been proposed using the Pattern Search Method, which is both reliable and accurate.
ompared with several published Arrhenius integral approximations, the newly proposed formula is superior to the others and is an ideal solution

or the estimation of kinetic parameters from nonisothermal thermogravimetric analysis data.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The simplest experiment to determine the kinetics of a ther-
al decomposition is thermogravimetry under nonisothermal

onditions. Since there are many inherent advantages, integral
ethods have been widely used to determine kinetic parame-

ers from nonisothermal thermogravimetric analysis data [1].
nfortunately, integral methods involve the integration of the
rrhenius function, so called ‘Arrhenius integral’, which has
o exact analytical solution. A large number of approximate
olutions for the Arrhenius integral, with varying complexity
nd precision, have been published [2]. However, many of these
pproximations are gross or even inaccurate and do not allow
roper values for the kinetic parameters to be obtained [3]. In
his work, a new Arrhenius integral approximate formula is
btained using the Pattern Search Method. It will be shown that
he new approximation is reliable and accurate as a solution for
he Arrhenius integral.
∗ Corresponding author at: Biomass Energy Engineering Research Center,
chool of Agriculture and Biology, Shanghai Jiao Tong University, 2678 Qixin
oad, Shanghai 201101, PR China. Tel.: +86 21 64783844.
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. Theory

The differential form of the nonisothermal rate of a solid
eaction can be generally described by,

dα

dT
= A

β
e−(E/RT )f (α) (1)

pon integration, Eq. (1) gives,

(α) =
∫ α

0

dα

f (α)
= A

β

∫ T

0
e−(E/RT ) dT (2)

The integral of the right hand side of Eq. (2) is called the
rrhenius integral. If E/RT is replace by ‘x’ and the integration

imits are transformed, the above equation becomes,

(α) = AE

βR

∫ ∞

x

e−x

x2 dx (3)

his is written as,

(α) = AE

βR
p(x) (4)

here p(x) is the exponential integral.

The p(x) function has no exact analytical solution and it is

sually expressed as follows [4]:

(x) = e−x

x2 h(x) (5)
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Fig. 1. The numerical results of h(x) at various x.

here h(x) is a function which changes slowly with x and is
lose to unity.

From Eqs. (3) to (5), one obtains

(x) = x2

e−x

∫ ∞

x

e−x

x2 dx (6)

he h(x) function has no exact analytical solution, but it can be
olved by using numerical techniques. For this purpose, either
eneral purposed mathematical software or a computer program

eveloped in any programming language is used. In this study,
he numerical calculations are performed by using the Mathe-

atica software system [5]. Fig. 1 shows the numerical results
f h(x) at various x.
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c
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xpressions of some approximations for the Arrhenius integral

uthor
∫ T

0
e−(E/RT ) dT

oats and Redfern [9]
RT 2

E

(
1 − 2RT

E

)
e−(E/RT )

orbachev [10] and Lee and Beck [11]
RT 2

E + 2RT
e−(E/RT )

i [12]
RT 2

E

[
1 − 2(RT/E)

1 − 6(RT/E)2

]
e−(E/RT

grawal [13]
RT 2

E

[
1 − 2(RT/E)

1 − 5(RT/E)2

]
e−(E/RT

uanyin and Su [14]
RT 2

E

[
1 − 2(RT/E)

1 − 4.6(RT/E)2

]
e−(E/

sakó [15]
ET e−(

(E + 2RT )[(E/RT ) − (16(RT )

anjun et al. [16]
RT 2

1.00198882E + 1.87391198RT

unmeng et al. [17]
RT 2

E

E + 0.66691RT

E + 2.64943RT
e−(E/RT )

ew approximation
RT 2

E

E + 0.25403RT ln(E/RT

E + 0.24598RT ln(E/RT
ring Journal 124 (2006) 15–18

In this study, the following rational formula is used to approx-
mate the h(x) function:

1(x) = x + a ln x + b

x + c ln x + d
(7)

here a, b, c and d are indeterminant parameters.
Most solid-state reactions take place in the range of

≤ x ≤ 100. To determine the values of a, b, c and d, the follow-
ng objective function is established:

.F. =
∫ 100

5
[h(x) − h1(x)]2 dx (8)

Those values which minimize the objective function are the
xpected values. It is difficult to get information about con-
erning gradient or higher derivations of the objective function.
herefore, the optimization algorithm should be derivative-free,

obust with respect to local optima. For this purpose, we propose
he use of the Pattern Search Method, which is a derivative-free,
irect search method and is superior to other direct search meth-
ds such as the Powell Method and Simplex Method in both
obustness and number of function evaluations [6]. For more
etails of the Pattern Search Method, readers are referred to lit-
rature [7].

In order to perform the numerical calculations required by the
inimization of the objective function, the ‘Pattern Search Tool’
n the ‘Genetic Algorithm and Direct Search Toolbox’ of the
ATLAB software system has been employed [8]. The values

f those parameters are established: a = 0.25403, b = 0.36665,
= 0.24598 and d = 2.41457. Then, the new exponential integral

p(x)

e−x

x2

(
1 − 2

x

)

e−x

x

1

x + 2

) e−x

x2

1 − (2/x)

1 − (6/x2)

) e−u

u2

1 − (2/x)

1 − (5/x2)

RT ) e−x

x2

1 − (2/x)

1 − (4.6/x2)

E/RT )

2/(E2 − 4ERT + 84(RT )2))]

e−x

[x − (16/(x2 − 4x + 84))](x + 2)

e−(E/RT ) e−x

x

1

1.00198882x + 1.87391198

e−x

x2

x + 0.66691

x + 2.64943

) + 0.36665RT

) + 2.41457RT
e−(E/RT ) e−x

x2

x + 0.25403 ln x + 0.36665

x + 0.24598 ln x + 2.41457
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Table 2
Relative errors of some Arrhenius integral approximations in percent

x Coats–Redfern Gorbachev–Lee–Beck Li Agrawal Quanyin–Su Zsakó Wanjun et al. Junmeng et al. New approximation

5 −1.8858E+01 −3.4025E+00 6.7656E+00 1.4273E+00 −5.6143E−01 2.0017E−01 −1.7727E+00 1.8218E−01 1.4827E−03
10 −5.1758E+00 −1.2248E+00 8.7680E−01 −1.8507E−01 −6.0358E−01 −1.1497E−01 −3.4284E−01 −4.7663E−02 −2.4357E−04
15 −2.3955E+00 −6.2890E−01 2.7860E−01 −1.7722E−01 −3.5838E−01 −2.0139E−01 −6.3049E−02 −2.9961E−02 3.3156E−04
20 −1.3787E+00 −3.8253E−01 1.2314E−01 −1.3033E−01 −2.3137E−01 −1.8488E−01 9.8349E−03 −1.2219E−02 2.5837E−04
25 −8.9552E−01 −2.5717E−01 6.5106E−02 −9.6289E−02 −1.6070E−01 −1.5224E−01 2.5751E−02 −1.4517E−03 5.4371E−05
30 −6.2836E−01 −1.8474E−01 3.8563E−02 −7.3212E−02 −1.1785E−01 −1.2309E−01 2.2883E−02 4.8464E−03 −1.1300E−04
35 −4.6520E−01 −1.3913E−01 2.4715E−02 −5.7273E−02 −9.0030E−02 −1.0006E−01 1.3542E−02 8.5453E−03 −2.1605E−04
40 −3.5828E−01 −1.0855E−01 1.6786E−02 −4.5921E−02 −7.0981E−02 −8.2324E−02 2.2520E−03 1.0717E−02 −2.6339E−04
45 −2.8441E−01 −8.7053E−02 1.1920E−02 −3.7591E−02 −5.7382E−02 −6.8634E−02 −9.2069E−03 1.1969E−02 −2.6957E−04
50 −2.3125E−01 −7.1367E−02 8.7680E−03 −3.1316E−02 −4.7340E−02 −5.7952E−02 −2.0133E−02 1.2652E−02 −2.4738E−04
55 −1.9172E−01 −5.9570E−02 6.6373E−03 −2.6478E−02 −3.9717E−02 −4.9506E−02 −3.0276E−02 1.2976E−02 −2.0650E−04
60 −1.6153E−01 −5.0475E−02 5.1451E−03 −2.2673E−02 −3.3796E−02 −4.2736E−02 −3.9578E−02 1.3070E−02 −1.5390E−04
65 −1.3795E−01 −4.3315E−02 4.0689E−03 −1.9629E−02 −2.9105E−02 −3.7238E−02 −4.8067E−02 1.3016E−02 −9.4444E−05
70 −1.1918E−01 −3.7578E−02 3.2733E−03 −1.7156E−02 −2.5326E−02 −3.2720E−02 −5.5803E−02 1.2868E−02 −3.1486E−05
75 −1.0400E−01 −3.2909E−02 2.6724E−03 −1.5122E−02 −2.2238E−02 −2.8967E−02 −6.2856E−02 1.2658E−02 3.2682E−05
80 −9.1542E−02 −2.9060E−02 2.2101E−03 −1.3428E−02 −1.9681E−02 −2.5816E−02 −6.9298E−02 1.2411E−02 9.6517E−05
85 −8.1198E−02 −2.5849E−02 1.8486E−03 −1.2002E−02 −1.7541E−02 −2.3149E−02 −7.5193E−02 1.2141E−02 1.5900E−04
90 −7.2513E−02 −2.3142E−02 1.5618E−03 −1.0792E−02 −1.5732E−02 −2.0870E−02 −8.0602E−02 1.1860E−02 2.1947E−04
95 −6.5151E−02 −2.0839E−02 1.3314E−03 −9.7552E−03 −1.4189E−02 −1.8910E−02 −8.5578E−02 1.1575E−02 2.7753E−04

100 −5.8856E−02 −1.8864E−02 1.1443E−03 −8.8609E−03 −1.2862E−02 −1.7212E−02 −9.0166E−02 1.1290E−02 3.3294E−04
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pproximation is given below:

1(x) = e−x

x2 h1(x) = e−x

x2

x + 0.25403 ln x + 0.36665

x + 0.24598 ln x + 2.41457
(9)

From Eqs. (2) to (4) and (9), the corresponding approximation
or the Arrhenius integral is obtained:

T

0
e−(E/RT ) dT

= RT 2

E

E + 0.25403RT ln(E/RT ) + 0.36665RT

E + 0.24598RT ln(E/RT ) + 2.41457RT
e−(E/RT )

(10)

Substituting Eq. (10) to Eq. (2), rearranging Eq. (2) and log-
rithm on both sides of Eq. (2), one gets the equation for the
valuation of nonisothermal kinetic parameters:

n

{
g(α)

T 2

E + 0.24598RT ln(E/RT ) + 2.41457RT

E + 0.25403RT ln(E/RT ) + 0.36665RT

}

= ln
AR

βE
− E

RT
(12)

. Results and discussion

The objective of this analysis is to evaluate the accuracy of
he newly proposed Arrhenius integral approximation. For this
urpose, several approximate formulas for the Arrhenius integral
re introduced for comparison and listed in Table 1. The p(x)
pproximations are also shown in Table 1.

Since p(x) is the variable-transformed expression of the
rrhenius integral, the accuracy evaluation of the Arrhenius inte-
ral approximation is identical to that of the corresponding p(x)
pproximation. The relative percent deviations associated with
he use of the above p(x) approximations for a physical realistic
omain of x are shown in Table 2. The ‘exact’ values of p(x)
sed for relative percent error calculations are obtained by dou-
le precision numerical integration using Simpson’s 1/3 rule as
oded for Mathematica.

As shown in Table 2, the newly proposed approximation for
he Arrhenius integral is significantly more accurate than other
pproximate formulas in the range of 5 ≤ x ≤ 100. The abso-
ute value of relative deviation from the ‘exact’ value for the
rrhenius integral to the new approximate formula is less than

.4827 × 10−3%. Furthermore, the newly proposed approxima-
ion is obtained directly from numerical results for the Arrhe-
ius integral without derivation from any approximating infinite
eries, therefore it is reliable.

[

[

ring Journal 124 (2006) 15–18

. Conclusions

1) By using the Pattern Search Method, a new approximation
for the Arrhenius integral has been proposed, which is both
reliable and accurate.

2) Compared with several other published Arrhenius inte-
gral approximations, the newly proposed approximate for-
mula is significantly more accurate than other approxima-
tions and is an ideal solution for the evaluation of kinetic
parameters from nonisothermal thermogravimetric analysis
data.

3) The corresponding equation for the evaluation of the kinetic
parameters is also presented, which can be put in the
form:

ln

{
g(α)

T 2

E + 0.24598RT ln(E/RT ) + 2.41457RT

E + 0.25403RT ln(E/RT ) + 0.36665RT

}

= ln
AR

βE
− E

RT
.
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